If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x-252=0
a = 1; b = -6; c = -252;
Δ = b2-4ac
Δ = -62-4·1·(-252)
Δ = 1044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1044}=\sqrt{36*29}=\sqrt{36}*\sqrt{29}=6\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{29}}{2*1}=\frac{6-6\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{29}}{2*1}=\frac{6+6\sqrt{29}}{2} $
| -6x-8=24x-6(5x-8) | | 4(2z-3)=16+3z | | (x/2)=6/4 | | (43x-31)+(31x+17)=180 | | -7(u-5)=-9u+17 | | 4m-1=59 | | -9x+7=-2(x+7) | | (5w+2)(1+w)=0 | | 5.4+13.1=-2.6p+3.5 | | 3m-10=5m+12 | | 3x-8=8x÷4÷2 | | 4(3x-15)=6(3x-27) | | -2(y-8)=-6y-8 | | 3x-8=8x÷4/2 | | 10a-5=195 | | -9x-40=-4(x+5) | | x^2-6x-2520=0 | | 7w+2w=-44+26 | | 5m+7=3+3m | | 18+18=-3p-3p | | -16=8(x-3)-4x | | -30+2c=6c-6 | | 3k=-35-4k | | 32=2(v+8)+6v | | 940+y=570 | | -113-9c=8c+6 | | 9x-6x+192=9x+84 | | 3•n-8=2•n+15 | | -8-x=5x-6 | | -9p+2=2p-64 | | -8u+2(u-2)=14 | | 8z=4z+28 |